Skip to main content
Log in

Effects of molecular structure on thermal, rheological and mechanical properties of drip irrigation PE tapes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Considering the microstructure-processing-properties relationship, the attempt was made to distinguish the main structural features of drip irrigation tape grades. In this regards, two different commercial polyethylene grades using for irrigation tape application (DB and MD samples) with various microstructural features were fully characterized by means of thermal, rheological and mechanical measurements and microscopic observations. A set of DSC techniques revealed that DB sample has faster crystallization kinetic probably due to its high crystallizable segments in chains and broad molecular weight distribution. It was found, the type of co-monomer used in DB sample is 1-hexene and in MD sample is 1-butene, given the fact that the amount of co-monomer in DB sample is higher than MD. With special attention to various rheological and thermo-rheological methods, the presence of long branches in DB sample was confirmed, which led to melt strength enhancement and higher production rate. Plus, microscopic observations show that long chain branches cause the separation of amorphous and crystalline regions at the molecular scale in DB sample. This special morphology affects the long-term mechanical properties, so that more natural draw ratio and strain hardening modulus is observed in DB sample, which indicates more Environmental Stress Crack Resistance compared to MD sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yuan Y et al (2013) Study on double position molding technology of labyrinth type drip irrigation tape. J Chem Pharm Res 5(12):59–63

    Google Scholar 

  2. Nishimura RA (1989) Handbook on pressurized irrigation techniques, vol. 13, no. 6

  3. Complex SKE (2017) Document made available under the Patent Cooperation Treaty (PCT)

  4. Paula JMD, Wood-Adams M (2000) Effect of molecular structure on the viscoelastic behavior of polyethyelen. Kobunshi Ronbunshu 33(1):7489–7499. https://doi.org/10.1295/koron.33.19

    Article  Google Scholar 

  5. Peng X, Watson H (2006) Metallocene ethylene-1-octene copolymers : Influence of comonomer content on thermo-mechanical, rheological, and thermo-oxidative behaviours before and after melt processing in an internal mixer. Polym Degrad Stab 91:3131–3148. https://doi.org/10.1016/j.polymdegradstab.2006.07.020

    Article  CAS  Google Scholar 

  6. Wu T, Yu L, Cao Y, Yang F, Xiang M (2013) Effect of molecular weight distribution on rheological, crystallization and mechanical properties of polyethylene-100 pipe resins. J Polym Res 20(10). https://doi.org/10.1007/s10965-013-0271-9

  7. Patel RM, Karjala TP, Savargaonkar NR, Salibi P, Liu L (2019) Fundamentals of structure–property relationships in blown films of linear low density polyethylene/low density polyethylene blends. J Plast Film Sheeting 35(4):401–421. https://doi.org/10.1177/8756087919844303

    Article  CAS  Google Scholar 

  8. Wingstrand SL et al (2017) Rheological Link between Polymer Melts with a High Molecular Weight Tail and Enhanced Formation of Shish-Kebabs. ACS Macro Lett 6(11):1268–1273. https://doi.org/10.1021/acsmacrolett.7b00718

    Article  CAS  PubMed  Google Scholar 

  9. La Mantia FP, Acierno D (1983) Influence of the molecular structure on the melt strength and extensibility of polyethylenes. Polym Eng Sci 25(5):279–283

    Article  Google Scholar 

  10. Hatzikiriakos SG (2000) Long chain branching and polydispersity effects on the rheological properties of polyethylenes. Polym Eng Sci 40(11):2279–2287

    Article  CAS  Google Scholar 

  11. Stadler FJ et al (2006) influence of type and content of various comonomers on long-chain branching of ethene / alpha olefin copolymers. Macromolecules 39:1474–1482

    Article  CAS  Google Scholar 

  12. Pircheraghi G, Sarafpour A, Rashedi R, Afzali K, Adibfar M (2017) Correlation between rheological and mechanical properties of black PE100 compounds – Effect of carbon black masterbatch. Express Polym Lett 11(8):622–634

    Article  CAS  Google Scholar 

  13. Derakhshandeh M, Ansari M, Doufas AK, Hatzikiriakos SG (2017) Microstructure characterization of polyethylene using thermo-rheological methods. Polym Test 60:68–77. https://doi.org/10.1016/j.polymertesting.2017.03.010

    Article  CAS  Google Scholar 

  14. Maddah Y et al (2020) Control over branching topology by introducing a dual catalytic system in coordinative chain transfer polymerization of olefins. Macromolecules 53(11):4312–4322. https://doi.org/10.1021/acs.macromol.0c00358

    Article  CAS  Google Scholar 

  15. Kessner U, Kaschta J, Stadler FJ, Le Duff CS, Drooghaag X, Münstedt H (2010) Thermorheological behavior of various short-and long-chain branched polyethylenes and their correlations with the molecular structure. Macromolecules 43(17):7341–7350. https://doi.org/10.1021/ma100705f

    Article  CAS  Google Scholar 

  16. Dordinejad AK, Jafari SH (2013) A qualitative assessment of long chain branching content in LLDPE , LDPE and their blends via thermorheological analysis. Appl Polym Sci 1–11. https://doi.org/10.1002/app.39560

  17. Stadler FJ, Gabriel C, Mu H (2007) Influence of short-chain branching of polyethylenes on the temperature dependence of rheological properties in shear. Macromol Chem Phys 208:2449–2454. https://doi.org/10.1002/macp.200700267

    Article  CAS  Google Scholar 

  18. Jeong SH, Kim JM, Baig C (2017) Rheological influence of short-chain branching for polymeric materials under shear with variable branch density and branching architecture. Macromolecules. https://doi.org/10.1021/acs.macromol.7b00544

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cheng JJ, Polak MA, Penlidis A (2011) Influence of micromolecular structure on environmental stress cracking resistance of high density polyethylene. Tunn Undergr Sp Technol 26:582–593. https://doi.org/10.1016/j.tust.2011.02.003

    Article  Google Scholar 

  20. Lustiger A (1983) Importance of tie molecules in preventing polyethylene fracture under long-term loading conditions. Polymer (Guildf) 24:1647–1654

    Article  CAS  Google Scholar 

  21. Fawaz J, Deveci S, Mittal V (2016) Molecular and morphological studies to understand slow crack growth (SCG) of polyethylene. Colloid Polym Sci 294(8):1269–1280. https://doi.org/10.1007/s00396-016-3888-5

    Article  CAS  Google Scholar 

  22. Brown N (1983) The influence of morphology and molecular weight on ductile-brittle transitions in linear polyethylene. J Mater Sci 18:1405–1420

    Article  CAS  Google Scholar 

  23. Gholami F, Pircheraghi G, Rashedi R, Sepahi A (2019) Correlation between isothermal crystallization properties and slow crack growth resistance of polyethylene pipe materials 80(September)

  24. Krishnaswamy RK, Yang Q, Fernandez-Ballester L, Kornfield JA (2008) Effect of the distribution of short-chain branches on crystallization kinetics and mechanical properties of high-density polyethylene. Macromolecules 41(5):1693–1704. https://doi.org/10.1021/ma070454h

    Article  CAS  Google Scholar 

  25. McCarthy M, Deblieck R (2008) New accelerated method to determine slow crack growth behaviour of polyethylene pipe materials. [Online]. Available: http://www.ppxiv.com/posters/mccarthy_poster.pdf

  26. Deguela R (2007) On the natural draw ratio of semi-crystalline polymers : review of the mechanical, physical and molecular aspects. Macromol Mater Eng 292:235–244. https://doi.org/10.1002/mame.200600389

    Article  CAS  Google Scholar 

  27. Deveci S, Kaliappan SK, Fawaz J, Gadgoli U, Das B (2018) Sensitivity of post yield axial deformation properties of high-density ethylene/α-olefin copolymers in relation to molecular structure and slow crack growth resistance. Polym Test. https://doi.org/10.1016/j.polymertesting.2018.10.032

    Article  Google Scholar 

  28. Deslauriers PJ, Lamborn MJ, Fodor JS (2018) Correlating polyethylene microstructure to stress cracking correlations to post yield tensile tests. Polymer (Guildf) 153:1–16. https://doi.org/10.1016/j.polymer.2018.08.023

    Article  CAS  Google Scholar 

  29. Lorenzo AT, Arnal L, Albuerne J, Mu AJ (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data : Guidelines to avoid common problems. Polym Test 26:222–231. https://doi.org/10.1016/j.polymertesting.2006.10.005

    Article  CAS  Google Scholar 

  30. Gholami F, Pircheraghi G, Sarafpour A (2020) Long-term mechanical performance of polyethylene pipe materials in presence of carbon black masterbatch with different carriers. Polym Test 91(June):106857. https://doi.org/10.1016/j.polymertesting.2020.106857

    Article  CAS  Google Scholar 

  31. Müller AJ, Hernández ZH, Arnal ML, Sánchez JJ (1997) Successive self-nucleation/annealing (SSA): A novel technique to study molecular segregation during crystallization. Polym Bull 39(4):465–472. https://doi.org/10.1007/s002890050174

    Article  Google Scholar 

  32. Eslamian GPM, Bagheri R (2016) Co-crystallization in Ternary PE Blends: Tie Crystal Formation and Mechanical Properties Improvement. Polym Int 65(12):1405–1416

    Article  CAS  Google Scholar 

  33. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2015) Introduction to spectroscopy

  34. Qing Zhang PC (2009) An effective method to identify the type and content of a-olefin in polyolefine copolymer by Fourier Transform Infrared-Differential Scanning Calorimetry. J Appl Polym Sci 113(5):3027–3032. https://doi.org/10.1002/app

    Article  Google Scholar 

  35. Zhou H, Wilkes GL (1997) Comparison of lamellar thickness and its distribution determined from d.s.c., SAXS, TEM and AFM for high-density polyethylene films having a stacked lamellar morphology. Polymer (Guildf) 38(23):5735–5747. https://doi.org/10.1016/S0032-3861(97)00145-6

    Article  CAS  Google Scholar 

  36. Mavridis H, Meier G, Schueller U, Doetsch D, Marczinke B, Vittorias I (2014) Polyethylene processes and compositions thereof, US9023945B2

  37. Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 1103(July):1103–1112. https://doi.org/10.1063/1.1750380

    Article  Google Scholar 

  38. Avrami M (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys 8(December):212–224. https://doi.org/10.1063/1.1750631

    Article  CAS  Google Scholar 

  39. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9(Agust):177–184. https://doi.org/10.1063/1.1750872

    Article  CAS  Google Scholar 

  40. Krumme A, Lehtinen A, Viikna A (2004) Crystallisation behaviour of high density polyethylene blends with bimodal molar mass distribution 1. Basic characteristics and isothermal crystallisation. Eur Polym J 40(2):359–369. https://doi.org/10.1016/j.eurpolymj.2003.10.005

    Article  CAS  Google Scholar 

  41. Sarafpour A, Pircheraghi G, Rashedi R, Afzali K (2018) Correlation between isothermal crystallization and morphological/rheological properties of bimodal polyethylene/carbon black systems. Polym Cryst 1(3):1–11. https://doi.org/10.1002/pcr2.10014

    Article  CAS  Google Scholar 

  42. Hosoda S (1988) Structural distribution of linear low-density polyethylenes. Polym J 20(5):383–397. https://doi.org/10.1295/polymj.20.383

    Article  CAS  Google Scholar 

  43. Han CD (2007) Rheology and processing of polymeric materials: Polymer rheology, vol. 1

  44. Morison FA (2001) Understanding rheology

  45. Larson RG (1999) The structure and rheology of complex fluids

  46. Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26:895–944

    Article  CAS  Google Scholar 

  47. Van Gurp M, Palmen J (1998) Time-temperature superposition for polymeric blends. Rheol Bull 67(1):5–8

    Google Scholar 

  48. van Ruymbeke E, Stéphenne V, Daoust D, Godard P, Keunings R, Bailly C (2005) A sensitive method to detect very low levels of long chain branching from the molar mass distribution and linear viscoelastic response. J Rheol (NYNY) 49(6):1503–1520. https://doi.org/10.1122/1.2048743

    Article  CAS  Google Scholar 

  49. Vega JF, Santamarı A (1998) Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes. Macromolecules 31(October):3639–3647

    Article  CAS  Google Scholar 

  50. Sardashti P, Stewart KME, Polak M, Tzoganakis C, Penlidis A (2019) Operational maps between molecular properties and environmental stress cracking resistance. J Appl Polym Sci 136(4):1–10. https://doi.org/10.1002/app.47006

    Article  CAS  Google Scholar 

  51. Fodor JS, Lamborn MJ, Deslauriers PJ (2018) Correlating polyethylene microstructure to stress cracking: Development of primary structure parameters. Polymer (Guildf) 147:8–19. https://doi.org/10.1016/j.polymer.2018.05.064.This

    Article  CAS  Google Scholar 

  52. Jandaghian MH (2021) Effects of polymerization parameters on the slow crack growth resistance and rheological properties of bimodal polyethylene resins. Appl Polym Sci 51867(October):1–10. https://doi.org/10.1002/app.51867

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Pircheraghi.

Ethics declarations

Competing of interests

The authors report there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghparast, S., Pircheraghi, G. & Houshmandmoayed, S. Effects of molecular structure on thermal, rheological and mechanical properties of drip irrigation PE tapes. J Polym Res 29, 419 (2022). https://doi.org/10.1007/s10965-022-03255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03255-4

Keywords

Navigation